自定义Hadoop OutputFormat输出格式

在许多场景中,默认输出格式和RecordWriter类并不最适合某些需求。 我们可以通过扩展FileOutputFormatClass类来创建自己的自定义输出类,并覆盖它的方法来实现我们的目标。 在本节中,我们将讨论如何创建自定义输出类和RecordWriter,并将这些类用作MapReduce程序。

自定义OutputFormat类,需要继承自FileOutputFormat类,实现getRecordWriter方法,并根据需要编写逻辑。 该方法主要包含了根据需要构建RecordWriter类的逻辑。

RecordWriter负责从Mapper或Reducer阶段将输出key-value对写入输出文件,所以我们可以通过扩展RecordWriter类来创建自定义RecordWriter类。

问题描述

我们知道TextOutputFormat的默认记录分隔符是NEW_LINE。 考虑这样一个场景,我们的mapper/reducer生成一个输出值,默认包含一些NEW_LINE。 但是我们想配置不同的记录分隔符,而不是NEW_LINE字符。

在本例中,为了更好地理解,我们使用了带有自定义输出格式类的单词计数程序。 我们将使用自定义配置属性mapreduce.output.textoutputformat.recordseparator设置自定义记录分隔符。

一、创建Java Maven项目

Maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>HadoopDemo</groupId>
    <artifactId>com.xueai8</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <!--hadoop依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--hdfs文件系统依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--MapReduce相关的依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--junit依赖-->
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!--编译器插件用于编译拓扑-->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <!--指定maven编译的jdk版本和字符集,如果不指定,maven3默认用jdk 1.5 maven2默认用jdk1.3-->
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source> <!-- 源代码使用的JDK版本 -->
                    <target>1.8</target> <!-- 需要生成的目标class文件的编译版本 -->
                    <encoding>UTF-8</encoding><!-- 字符集编码 -->
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

WordCountLineRecordWriter.java:

这是自定义自定义RecordWriter类,需要扩展RecordWriter<K, V>类。

package com.xueai8.customoutput;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.DataOutputStream;
import java.io.IOException;
import java.nio.charset.StandardCharsets;

/**
 *
 * 自定义RecordWriter类
 */
public class WordCountLineRecordWriter<K, V> extends RecordWriter<K, V> {

    protected DataOutputStream out;
    private final byte[] recordSeprator;        // 记录分隔符
    private final byte[] fieldSeprator;         // 字段分隔符

    // 指定字段分隔符和记录分隔符
    public WordCountLineRecordWriter(DataOutputStream out, String fieldSeprator,String recordSeprator) {
        this.out = out;
        this.fieldSeprator = fieldSeprator.getBytes(StandardCharsets.UTF_8);
        this.recordSeprator = recordSeprator.getBytes(StandardCharsets.UTF_8);
    }

    // 使用默认的字段分隔符和记录分隔符
    public WordCountLineRecordWriter(DataOutputStream out) {
        this(out, "\t","\n");
    }

    private void writeObject(Object o) throws IOException {
        if (o instanceof Text) {
            Text to = (Text)o;
            this.out.write(to.getBytes(), 0, to.getLength());
        } else {
            this.out.write(o.toString().getBytes(StandardCharsets.UTF_8));
        }

    }

    public synchronized void write(K key, V value) throws IOException {
        boolean nullKey = key == null || key instanceof NullWritable;
        boolean nullValue = value == null || value instanceof NullWritable;
        if (!nullKey || !nullValue) {
            if (!nullKey) {
                this.writeObject(key);
            }

            if (!nullKey && !nullValue) {
                this.out.write(this.fieldSeprator);
            }

            if (!nullValue) {
                this.writeObject(value);
            }

            this.out.write(recordSeprator); // 写出自定义的记录分隔符而不是NEW_LINE
        }
    }

    public synchronized void close(TaskAttemptContext context) throws IOException {
        this.out.close();
    }
}

WordCountOutputFormat.java:

自定义Hadoop OutputFormat类,来格式化输出结果。

package com.xueai8.customoutput;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.DataOutputStream;
import java.io.IOException;


public class WordCountOutputFormat<K,V> extends FileOutputFormat<K, V> {

    public static String FIELD_SEPARATOR = "mapreduce.output.textoutputformat.separator";
    public static String RECORD_SEPARATOR = "mapreduce.output.textoutputformat.recordseparator";

    @Override
    public RecordWriter<K, V> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
        Configuration conf = job.getConfiguration();
        boolean isCompressed = getCompressOutput(job);

        // 指定字段分隔符,默认是 \t
        String fieldSeprator = conf.get(FIELD_SEPARATOR, "\t");
        // 指定记录分隔符,默认是 \n
        String recordSeprator = conf.get(RECORD_SEPARATOR, "\n");

        // 压缩输出逻辑
        CompressionCodec codec = null;
        String extension = "";
        if (isCompressed) {
            Class codecClass = getOutputCompressorClass(job, GzipCodec.class);
            codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, conf);
            extension = codec.getDefaultExtension();
        }

        Path file = this.getDefaultWorkFile(job, extension);
        FileSystem fs = file.getFileSystem(conf);
        FSDataOutputStream fileOut = fs.create(file, false);
        if(isCompressed){
            return new WordCountLineRecordWriter<>(new DataOutputStream(codec.createOutputStream(fileOut)), fieldSeprator, recordSeprator);
        }else{
            return new WordCountLineRecordWriter<>(fileOut, fieldSeprator, recordSeprator);
        }
    }
}  

WordCountMapper.java:

Mapper类。

package com.xueai8.customoutput;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
import java.util.StringTokenizer;

public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        /*
         * 1. 转换为小写
         * 2. 将所有标点符号替换为空格
         * 3. 输入行分词
         * 4. 将其写入HDFS
         *  */
        String line = value.toString().toLowerCase().replaceAll("\\p{Punct}"," ");
        StringTokenizer st = new StringTokenizer(line," ");
        while(st.hasMoreTokens()){
            word.set(st.nextToken());
            context.write(word,one);
        }
    }
}  

WordCountReducer.java:

Reducer类。

package com.xueai8.customoutput;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context)
            throws IOException, InterruptedException {
        int sum = 0;
        for(IntWritable value : values){
            sum = sum + value.get();
        }

        context.write(key, new IntWritable(sum));
    }
}  

WordCountDriver.java:

驱动程序类。注意这里我们使用了ToolRunner接口。

package com.xueai8.customoutput;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class WordCountDriver extends Configured implements Tool {

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new Configuration(), new WordCountDriver(), args);
        System.exit(exitCode);
    }

    public int run(String[] args) throws Exception {

        if (args.length != 2) {
            System.out.println("执行程序需要提供两个参数:");
            System.out.println("[ 1 ] 输入路径");
            System.out.println("[ 2 ] 输出路径");
            return -1;
        }

        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
        Path input = new Path(otherArgs[0]);
        Path output = new Path(otherArgs[1]);

        /*
         * 取消下面三行注释以启用map reduce作业的本地调试
         *
         */
        /*
        conf.set("fs.defaultFS", "local");
        conf.set("mapreduce.job.maps","1");
        conf.set("mapreduce.job.reduces","1");
        */

        Job job = Job.getInstance(conf,"Hadoop Example");
        job.setJarByClass(WordCountDriver.class);

        // set mapper
        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // set reducer
        job.setReducerClass(WordCountReducer.class);
        job.setNumReduceTasks(1);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // set input format and output format
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(WordCountOutputFormat.class);

        // Custom record separator, set in job configuration
        job.getConfiguration().set("mapreduce.output.textoutputformat.recordseparator","<==>");
        // 设置字段分隔符,而不是默认的\t字符
        job.getConfiguration().set("mapreduce.output.textoutputformat.separator",";");

        FileInputFormat.addInputPath(job, input);
        FileOutputFormat.setOutputPath(job, output);

        job.setSpeculativeExecution(false);     // 关闭此作业的投机执行(即推测执行机制)
        boolean success = job.waitForCompletion(true);

        return (success?0:1);
    }
} 

二、配置log4j

在src/main/resources目录下新增log4j的配置文件log4j.properties,内容如下:

log4j.rootLogger = info,stdout

### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n

三、项目打包

打开IDEA下方的终端窗口terminal,执行"mvn clean package"打包命令,如下图所示:

如果一切正常,会提示打jar包成功。如下图所示:

这时查看项目结构,会看到多了一个target目录,打好的jar包就位于此目录下。如下图所示:

四、项目部署

请按以下步骤执行。

1、启动HDFS集群和YARN集群。在Linux终端窗口中,执行如下的脚本:

$ start-dfs.sh
$ start-yarn.sh

查看进程是否启动,集群运行是否正常。在Linux终端窗口中,执行如下的命令:

$ jps

这时应该能看到有如下5个进程正在运行,说明集群运行正常:

    5542 NodeManager
    5191 SecondaryNameNode
    4857 NameNode
    5418 ResourceManager
    4975 DataNode

2、先在本地创建一个输入数据文件word.txt,并编辑内容如下:

Hello World Bye World
Hello Hadoop Bye Hadoop
Bye  Hadoop Hello Hadoop
hello, every one!

3、将数据文件word.txt上传到HDFS的/data/mr/目录下。

$ hdfs dfs -mkdir -p /data/mr
$ hdfs dfs -put word.txt /data/mr/
$ hdfs dfs -ls /data/mr/

4、提交作业到Hadoop集群上运行。(如果jar包在Windows下,请先拷贝到Linux中。)

在终端窗口中,执行如下的作业提交命令:

$ hadoop jar HadoopDemo-1.0-SNAPSHOT.jar com.xueai8.customoutput.WordCountDriver /data/mr /data/mr-output 

5、查看输出结果。

在终端窗口中,执行如下的HDFS命令,查看输出结果:

$ hdfs dfs -ls /data/mr-output 
$ hdfs dfs -cat /data/mr-output/part-r-00000

可以看到最后的统计结果如下:

bye;3<==>every;1<==>hadoop;4<==>hello;4<==>one;1<==>world;2<==>

《Spark原理深入与编程实战》