使用Hadoop ArrayWritable数据类型

ArrayWritable:存储Writable类型的值的数组。 要想使用ArrayWritable类型作为Reducer的输入的value类型,我们需要创建一个ArrayWritable的子类来指定它要存储的Writable值的类型。 例如,如果我们需要一个能够存储多个LongWritable数据的数据类型,可以象下面这们定义一人:

public class LongArrayWritable extends ArrayWritable {
    public LongArrayWritable() {
        super(LongWritable.class);
    }
}
-----------------------------------------------------------------------------------------

案例描述

现在有如下的员工信息:


这些信息存储在数据文件input.txt中,如下:

1201,gopal,45,Male,50000
1202,manisha,40,Female,51000
1203,khaleel,34,Male,30000
1204,prasanth,30,Male,31000
1205,kiran,20,Male,40000
1206,laxmi,25,Female,35000
1207,bhavya,20,Female,15000
1208,reshma,19,Female,14000
1209,kranthi,22,Male,22000
1210,Satish,24,Male,25000
1211,Krishna,25,Male,26000
1212,Arshad,28,Male,20000
1213,lavanya,18,Female,8000

要求编写MapReduce应用程序,处理输入数据集,按性别找出不同年龄组中最高薪水的员工 (例如, 小于20岁, 21岁至30岁之间, 大于30岁),并输出。

一、创建Java Maven项目

Maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>HadoopDemo</groupId>
    <artifactId>com.xueai8</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <!--hadoop依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--hdfs文件系统依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--MapReduce相关的依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--junit依赖-->
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!--编译器插件用于编译拓扑-->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <!--指定maven编译的jdk版本和字符集,如果不指定,maven3默认用jdk 1.5 maven2默认用jdk1.3-->
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source> <!-- 源代码使用的JDK版本 -->
                    <target>1.8</target> <!-- 需要生成的目标class文件的编译版本 -->
                    <encoding>UTF-8</encoding><!-- 字符集编码 -->
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

IntArrayWritable.java:

要想使用ArrayWritable类型作为Reducer的输入的value类型,我们需要创建一个ArrayWritable的子类来指定它要存储的Writable值的类型。

package com.xueai8.writable;

import org.apache.hadoop.io.ArrayWritable;
import org.apache.hadoop.io.IntWritable;

/**
 *
 * 定义一个ArrayWritable的子类
 */
public class IntArrayWritable extends ArrayWritable {

    public IntArrayWritable() {
        super(IntWritable.class);
    }

    public void set(String[] values) {
        IntWritable[] text = new IntWritable[values.length];
        for (int i = 0; i < values.length; i++) {
            text[i] = new IntWritable(Integer.parseInt(values[i]));
        }
        super.set(text);
    }
}

IntArrayMapper.java:

package com.xueai8.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;

public class IntArrayMapper extends Mapper<LongWritable, Text, Text, IntArrayWritable> {

    // 定义可重用的Hadoop类型
    private final Text genderKey = new Text();
    private final IntArrayWritable manyIntValue = new IntArrayWritable();

    // 输入一行: 1201,gopal,45,Male,50000
    @Override
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] str = value.toString().split(",", -1);
        String[] output = { str[2], str[4] };   // 年龄,薪资

        genderKey.set(str[3]);                  // 性别为key
        manyIntValue.set(output);               // [年龄,薪资]为value

        context.write(genderKey, manyIntValue); // 写出
    }
}

CaderPartitioner.java:自定义分区器

package com.xueai8.writable;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

// 根据给定的分区条件,输入的key-value对数据基于年龄条件可以被分为三部分
public class CaderPartitioner extends Partitioner<Text, IntArrayWritable> {

    // 输入数据格式:<性别, [年龄,薪资]>
    @Override
    public int getPartition(Text key, IntArrayWritable value, int numReduceTasks) {
        IntWritable[] text = (IntWritable[]) value.get(); // 年龄,薪资

        int age = text[0].get();            // 年龄

        if (numReduceTasks == 0) {
            return 0;
        }
        if (age <= 20) {
            return 0;
        } else if (age <= 30) {
            return 1 % numReduceTasks;
        } else {
            return 2 % numReduceTasks;
        }
    }
}

IntArrayReducer.java:

package com.xueai8.writable;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;

public class IntArrayReducer extends Reducer<Text, IntArrayWritable, Text, IntWritable> {

    private final Text outKey = new Text();
    private final IntWritable outValue = new IntWritable(0);

    // 输入数据格式:<性别, [年龄,薪资]>
    @Override
    public void reduce(Text key, Iterable<IntArrayWritable> values, Context context)
            throws IOException, InterruptedException {
        int max = -1;
        // 遍历每一个[年龄,薪资]
        for (IntArrayWritable val : values) {
            Writable[] str = val.get();
            IntWritable salary = (IntWritable)str[1];   // 取薪资
            if (salary.get() > max) {
                max = salary.get();
            }
        }
        outKey.set(key);
        outValue.set(max);
        context.write(outKey, outValue);
    }
}

IntArrayDriver.java:

package com.xueai8.writable;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class IntArrayDriver {

    public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
        if (args.length < 2) {
            System.err.println("语法: IntArrayDriver <input_path> <output_path>");
            System.exit(-1);
        }

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "PartitionerDemo");
        job.setJarByClass(IntArrayDriver.class);

        // set mapper
        job.setMapperClass(IntArrayMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntArrayWritable.class);

        // 设置自定义分区器
        job.setPartitionerClass(CaderPartitioner.class);

        // set reducer
        job.setReducerClass(IntArrayReducer.class);
        job.setNumReduceTasks(3);       // 设置3个分区
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : -1);
    }
}

二、配置log4j

在src/main/resources目录下新增log4j的配置文件log4j.properties,内容如下:

log4j.rootLogger = info,stdout

### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n

三、项目打包

打开IDEA下方的终端窗口terminal,执行"mvn clean package"打包命令,如下图所示:

如果一切正常,会提示打jar包成功。如下图所示:

这时查看项目结构,会看到多了一个target目录,打好的jar包就位于此目录下。如下图所示:

四、项目部署

请按以下步骤执行。

1、启动HDFS集群和YARN集群。在Linux终端窗口中,执行如下的脚本:

$ start-dfs.sh
$ start-yarn.sh

查看进程是否启动,集群运行是否正常。在Linux终端窗口中,执行如下的命令:

$ jps

这时应该能看到有如下5个进程正在运行,说明集群运行正常:

    5542 NodeManager
    5191 SecondaryNameNode
    4857 NameNode
    5418 ResourceManager
    4975 DataNode

2、将数据文件sample.txt上传到HDFS的/data/mr/目录下。

$ hdfs dfs -mkdir -p /data/mr
$ hdfs dfs -put input.txt /data/mr/
$ hdfs dfs -ls /data/mr/

3、提交作业到Hadoop集群上运行。(如果jar包在Windows下,请先拷贝到Linux中。)

在终端窗口中,执行如下的作业提交命令:

$ hadoop jar com.xueai8-1.0-SNAPSHOT.jar com.xueai8.writable.IntArrayDriver /data/mr /data/mr-output 

4、查看输出结果。

在终端窗口中,执行如下的HDFS命令,查看输出结果:

$ hdfs dfs -ls /data/mr-output 

会发现生成了三个输出结果文件,每个reducer(每个分区)对应一个输出文件。

查看第一个结果文件中的内容:

$ hdfs dfs -cat /data/mr-output/part-r-00000

可以看到如下的输出结果:

Female	15000
Male	40000

查看第二个结果文件中的内容:

$ hdfs dfs -cat /data/mr-output/part-r-00001

可以看到如下的输出结果:

Female	35000
Male	31000

查看第三个结果文件中的内容:

$ hdfs dfs -cat /data/mr-output/part-r-00002

可以看到如下的输出结果:

Female	51000
Male	50000

《PySpark原理深入与编程实战》