自定义的Hadoop Key数据类型

Hadoop MapReduce key类型的实例应该具有相互比较(用于排序)的能力。 要能被用作MapReduce计算中的key类型,一个Hadoop Writable数据类型应该实现org.apache.hadoop.io.WritableComparable<T> 接口。 该WritableComparable接口继承自org.apache.hadoop.io.Writable接口,并增加了compareTo()方法来执行比较。

案例描述

下面我们为HTTP服务器日志项实现一个Hadoop Writable数据类型。 这里我们假定一个日志项由五部分组成:request host、timestamp、request URL、response size和HTTP状态码。如下所示:

192.168.0.2 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/HTTP/1.0" 200 6245

其中:

  • 199.72.81.55 客户端用户的ip
  • 01/Jul/1995:00:00:01 -0400 访问的时间
  • GET HTTP方法,GET或POST
  • /history/apollo/ 客户请求的URL
  • 200 响应码 404
  • 6245 响应内容的大小

要求:实现一个自定义的Hadoop Writable数据类型用于HTTP服务器日志项。

思路

如果某个数据类型要被用作一个MapReduce计算的key数据类型,那么该数据类型必须实现org.apache.hadoop.io.WritableComparable接口。 修改之前的LogWritable数据类型,以实现WritableComparable接口,使用request hostname和timestamp来比较。

一、创建Java Maven项目

Maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>HadoopDemo</groupId>
    <artifactId>com.xueai8</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <!--hadoop依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--hdfs文件系统依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--MapReduce相关的依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!--junit依赖-->
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!--编译器插件用于编译拓扑-->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <!--指定maven编译的jdk版本和字符集,如果不指定,maven3默认用jdk 1.5 maven2默认用jdk1.3-->
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source> <!-- 源代码使用的JDK版本 -->
                    <target>1.8</target> <!-- 需要生成的目标class文件的编译版本 -->
                    <encoding>UTF-8</encoding><!-- 字符集编码 -->
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

首先,编写一个实现了org.apache.hadoop.io.WritableComparable接口的LogWritable类。

LogWritable.java:

package com.xueai8.logkey;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

// 自定义LogWritable类
public class LogWritable implements WritableComparable<LogWritable> {

    private Text userIP, timestamp, request;
    private IntWritable responseSize, status;

    // 必须要有无参构造器
    public LogWritable() {
        this.userIP = new Text();
        this.timestamp =  new Text();
        this.request = new Text();
        this.responseSize = new IntWritable();
        this.status = new IntWritable();
    }

    public void set (String userIP, String timestamp, String request, int bytes, int status){
        this.userIP.set(userIP);
        this.timestamp.set(timestamp);
        this.request.set(request);
        this.responseSize.set(bytes);
        this.status.set(status);
    }

    // 反序列化操作
    @Override
    public void readFields(DataInput in) throws IOException {
        userIP.readFields(in);
        timestamp.readFields(in);
        request.readFields(in);
        responseSize.readFields(in);
        status.readFields(in);
    }

    // 序列化操作
    @Override
    public void write(DataOutput out) throws IOException {
        userIP.write(out);
        timestamp.write(out);
        request.write(out);
        responseSize.write(out);
        status.write(out);
    }

    /*** 可比较的,按ip和timestamp  ***/
    @Override
    public int compareTo(LogWritable o) {
        if (userIP.compareTo(o.userIP) == 0) {
            return timestamp.compareTo(o.timestamp);
        } else
            return userIP.compareTo(o.userIP);
    }

    public int hashCode(){
        return userIP.hashCode();
    }

    public Text getUserIP() {
        return userIP;
    }

    public Text getTimestamp() {
        return timestamp;
    }

    public Text getRequest() {
        return request;
    }

    public IntWritable getResponseSize() {
        return responseSize;
    }

    public IntWritable getStatus() {
        return status;
    }
}

说明:

在WritableComparable接口中,除了Writable接口的readFields()和write()方法外,还引入 了compareTo()方法。 如果这个对象小于、等于或大于另一个进行比较的对象时,compareTo()方法应该返回一个负整数、零或一个正整数。 在这个LogWritable实现中,如果用于的ip地址和timestamps都相同的话,我们认为这两个对象是相等的。 如果这两个对象不相等,则进行排序,首先基于用户ip地址,然后基于timestamps:

public int compareTo(LogWritable o) {
    if (userIP.compareTo(o.userIP)==0){
        return (timestamp.compareTo(o.timestamp));
    }else 
        return (userIP.compareTo(o.userIP);
}  

Hadoop使用HashPartitioner作为默认的partitioner实现来计算中间数据分发到的Reducer。 HashPartitioner要求key对象的hashCode()方法满足如下两个属性:

  • 跨不同的JVM实例提供相同的hash值
  • 提供hash值的均匀分布

因此,必须实现一个稳定的hashCode()方法,用于满足上面提到的两个要求的自定义的Hadoop key类型。 在该LogWritable实现中,我们使用request hostname/IP地址的hash码作为该LogWriter实例的hash码。 这确保中间的LogWritable数据将基于request hostaname/IP地址被分区。

public int hashCode(){
    return userIP.hashCode();
}    

在MapReduce计算中,既可以使用LogWritable类型作为一个key类型,也可以使用LogWritable类型作为一个value类型。 在下面的示例中,我们使用该LogWritable类型作为Map输出的key类型。

LogMapper.java:

package com.xueai8.logkey;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 *
 * 使用 LogWritable 类型作为Map输出的key类型
 * 实现自动去重(同一IP同一时间的访问为重复数据)
 */
public class LogMapper extends Mapper<LongWritable,Text, LogWritable, IntWritable>{

    private final LogWritable outKey = new LogWritable();
    private final IntWritable outValue = new IntWritable(0);

    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // 提取相应字段的正则表达式
        String regexp = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\d+)";

        Pattern pattern = Pattern.compile(regexp);
        Matcher matcher = pattern.matcher(value.toString());
        if(!matcher.matches()) {
            System.out.println("不是一个有效的日志记录");
            return;
        }

        // 提取相应的字段
        String ip = matcher.group(1);
        String timestamp = matcher.group(4);
        String url = matcher.group(5);
        int status = Integer.parseInt(matcher.group(6));
        int responseSize = Integer.parseInt(matcher.group(7));

        // LogWritable为 value
        outKey.set(ip, timestamp, url, status, responseSize);
        outValue.set(responseSize);

        context.write(outKey, outValue);    // 写出
    }
}

在下面的示例中,我们使用该LogWritable类型作为Reduce输入的key类型。

LogReducer.java:

这里我们统计每个IP的下载量。

package com.xueai8.logkey;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 *
 * 计算每个IP某一时刻的下载量
 */
public class LogReducer extends Reducer<LogWritable, IntWritable, Text, IntWritable> {

    private final Text outKey = new Text();
    private final IntWritable outValue = new IntWritable(0);

    @Override
    protected void reduce(LogWritable key,Iterable<IntWritable> values, Context context)
            throws IOException, InterruptedException {
        int total = 0;
        for(IntWritable value : values) {
            total += value.get();
        }
        outValue.set(total);
        outKey.set(key.getUserIP() + "_" + key.getTimestamp());

        context.write(outKey, outValue);        // 写出
    }
}

LogDriver.java:

作为输入,这个应用程序可以接收任何文本文件。可直接从IDE运行LogDriver类并传递input和output作为参数。

package com.xueai8.logkey;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class LogDriver {

    public static void main(String[] args) throws IllegalStateException, IllegalArgumentException, ClassNotFoundException, IOException, InterruptedException {
        if(args.length < 2) {
            System.out.println("用法: LogDriver <input> <output>");
            System.exit(1);
        }

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf,"日志分析");

        job.setJarByClass(LogDriver.class);

        // set mapper
        job.setMapperClass(LogMapper.class);
        job.setMapOutputKeyClass(LogWritable.class);
        job.setMapOutputValueClass(IntWritable.class);

        // set reducer
        job.setReducerClass(LogReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 设置输入路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 提交作业
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

二、配置log4j

在src/main/resources目录下新增log4j的配置文件log4j.properties,内容如下:

log4j.rootLogger = info,stdout

### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n

三、项目打包

打开IDEA下方的终端窗口terminal,执行"mvn clean package"打包命令,如下图所示:

如果一切正常,会提示打jar包成功。如下图所示:

这时查看项目结构,会看到多了一个target目录,打好的jar包就位于此目录下。如下图所示:

四、项目部署

请按以下步骤执行。

1、启动HDFS集群和YARN集群。在Linux终端窗口中,执行如下的脚本:

$ start-dfs.sh
$ start-yarn.sh

查看进程是否启动,集群运行是否正常。在Linux终端窗口中,执行如下的命令:

$ jps

这时应该能看到有如下5个进程正在运行,说明集群运行正常:

    5542 NodeManager
    5191 SecondaryNameNode
    4857 NameNode
    5418 ResourceManager
    4975 DataNode

2、将日志数据文件log_sample.txt上传到HDFS的/data/mr/目录下。

$ hdfs dfs -mkdir -p /data/mr
$ hdfs dfs -put log_sample.txt /data/mr/
$ hdfs dfs -ls /data/mr/

3、提交作业到Hadoop集群上运行。(如果jar包在Windows下,请先拷贝到Linux中。)

在终端窗口中,执行如下的作业提交命令:

$ hadoop jar HadoopDemo-1.0-SNAPSHOT.jar com.xueai8.logkey.LogDriver /data/mr /data/mr-output 

4、查看输出结果。

在终端窗口中,执行如下的HDFS命令,查看输出结果:

    $ hdfs dfs -ls /data/mr-output 
    $ hdfs dfs -cat /data/mr-output/part-r-00000

可以看到最后的统计结果如下:

129.94.144.152_01/Jul/1995:00:00:13 -0400	7074
129.94.144.152_01/Jul/1995:00:00:17 -0400	0
199.120.110.21_01/Jul/1995:00:00:09 -0400	4085
199.120.110.21_01/Jul/1995:00:00:11 -0400	4179
199.120.110.21_01/Jul/1995:00:00:17 -0400	1713
199.72.81.55_01/Jul/1995:00:00:01 -0400	6245
199.72.81.55_01/Jul/1995:00:00:59 -0400	1382
199.72.81.55_01/Jul/1995:00:01:43 -0400	7074
199.72.81.55_01/Jul/1995:00:01:46 -0400	5866
199.72.81.55_01/Jul/1995:00:01:50 -0400	363
199.72.81.55_01/Jul/1995:00:01:51 -0400	234
199.72.81.55_01/Jul/1995:00:01:52 -0400	669
205.189.154.54_01/Jul/1995:00:00:24 -0400	3985
205.189.154.54_01/Jul/1995:00:00:29 -0400	40310
205.189.154.54_01/Jul/1995:00:00:40 -0400	786
205.189.154.54_01/Jul/1995:00:00:41 -0400	1204
205.189.154.54_01/Jul/1995:00:01:06 -0400	110
205.189.154.54_01/Jul/1995:00:01:08 -0400	7634
205.189.154.54_01/Jul/1995:00:01:19 -0400	1224
205.212.115.106_01/Jul/1995:00:00:12 -0400	3985
205.212.115.106_01/Jul/1995:00:01:13 -0400	7634
alyssa.prodigy.com_01/Jul/1995:00:00:33 -0400	12054
burger.letters.com_01/Jul/1995:00:00:11 -0400	0
burger.letters.com_01/Jul/1995:00:00:12 -0400	0
d104.aa.net_01/Jul/1995:00:00:13 -0400	3985
d104.aa.net_01/Jul/1995:00:00:15 -0400	42300
dave.dev1.ihub.com_01/Jul/1995:00:01:55 -0400	3985
dave.dev1.ihub.com_01/Jul/1995:00:01:58 -0400	786
dave.dev1.ihub.com_01/Jul/1995:02:01:58 -0400	40310
dave.dev1.ihub.com_01/Jul/1995:03:01:58 -0400	1204
dd14-012.compuserve.com_01/Jul/1995:00:01:05 -0400	42732
dial22.lloyd.com_01/Jul/1995:00:00:37 -0400	61716
gater3.sematech.org_01/Jul/1995:00:01:50 -0400	40310
gater3.sematech.org_01/Jul/1995:00:01:52 -0400	1204
gater4.sematech.org_01/Jul/1995:00:01:46 -0400	3985
gater4.sematech.org_01/Jul/1995:00:01:52 -0400	786
gayle-gaston.tenet.edu_01/Jul/1995:00:00:50 -0400	12040
ix-or10-06.ix.netcom.com_01/Jul/1995:00:01:52 -0400	5998
ix-or10-06.ix.netcom.com_01/Jul/1995:00:01:57 -0400	4151
ix-orl2-01.ix.netcom.com_01/Jul/1995:00:00:41 -0400	3985
ix-orl2-01.ix.netcom.com_01/Jul/1995:00:00:44 -0400	40310
ix-orl2-01.ix.netcom.com_01/Jul/1995:00:01:18 -0400	1204
link097.txdirect.net_01/Jul/1995:00:01:26 -0400	8677
link097.txdirect.net_01/Jul/1995:00:01:27 -0400	11853
link097.txdirect.net_01/Jul/1995:00:01:31 -0400	1990
link097.txdirect.net_01/Jul/1995:00:01:44 -0400	4377
link097.txdirect.net_01/Jul/1995:00:01:45 -0400	4179
link097.txdirect.net_01/Jul/1995:00:01:47 -0400	1713
link097.txdirect.net_01/Jul/1995:00:01:55 -0400	6922
link097.txdirect.net_01/Jul/1995:00:01:56 -0400	11417
net-1-141.eden.com_01/Jul/1995:00:00:19 -0400	34029
netport-27.iu.net_01/Jul/1995:00:01:57 -0400	7074
onyx.southwind.net_01/Jul/1995:00:01:34 -0400	3985
onyx.southwind.net_01/Jul/1995:00:01:35 -0400	40310
onyx.southwind.net_01/Jul/1995:00:01:39 -0400	0
piweba3y.prodigy.com_01/Jul/1995:00:00:54 -0400	12054
piweba3y.prodigy.com_01/Jul/1995:00:01:14 -0400	55666
pm13.j51.com_01/Jul/1995:01:01:58 -0400	305722
port26.annex2.nwlink.com_01/Jul/1995:00:01:02 -0400	9867
port26.annex2.nwlink.com_01/Jul/1995:00:01:04 -0400	31073
port26.annex2.nwlink.com_01/Jul/1995:00:01:17 -0400	13372
port26.annex2.nwlink.com_01/Jul/1995:00:01:27 -0400	1567
port26.annex2.nwlink.com_01/Jul/1995:00:01:32 -0400	903
ppp-mia-30.shadow.net_01/Jul/1995:00:00:27 -0400	7074
ppp-mia-30.shadow.net_01/Jul/1995:00:00:35 -0400	5866
ppp-mia-30.shadow.net_01/Jul/1995:00:00:41 -0400	1383
ppp-mia-30.shadow.net_01/Jul/1995:00:00:43 -0400	669
ppp-nyc-3-1.ios.com_01/Jul/1995:00:00:59 -0400	77163
ppp-nyc-3-1.ios.com_01/Jul/1995:00:01:49 -0400	52491
ppptky391.asahi-net.or.jp_01/Jul/1995:00:00:18 -0400	3977
ppptky391.asahi-net.or.jp_01/Jul/1995:00:00:19 -0400	11473
remote27.compusmart.ab.ca_01/Jul/1995:00:01:14 -0400	12054
remote27.compusmart.ab.ca_01/Jul/1995:00:01:27 -0400	3985
remote27.compusmart.ab.ca_01/Jul/1995:00:01:53 -0400	110
remote27.compusmart.ab.ca_01/Jul/1995:00:01:55 -0400	7634
scheyer.clark.net_01/Jul/1995:00:00:58 -0400	49152
slip1.yab.com_01/Jul/1995:00:01:26 -0400	6168
slip1.yab.com_01/Jul/1995:00:01:29 -0400	16991
smyth-pc.moorecap.com_01/Jul/1995:00:00:38 -0400	101267
smyth-pc.moorecap.com_01/Jul/1995:00:01:19 -0400	18149
smyth-pc.moorecap.com_01/Jul/1995:00:01:24 -0400	2261
unicomp6.unicomp.net_01/Jul/1995:00:00:06 -0400	3985
unicomp6.unicomp.net_01/Jul/1995:00:00:14 -0400	42300
unicomp6.unicomp.net_01/Jul/1995:00:01:41 -0400	3214
waters-gw.starway.net.au_01/Jul/1995:00:00:25 -0400	6723
www-a1.proxy.aol.com_01/Jul/1995:00:01:09 -0400	3985
www-b4.proxy.aol.com_01/Jul/1995:00:01:21 -0400	70712

《Flink原理深入与编程实战》